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In this study, an inverse algorithm based on the conjugate gradient method and the discrepancy principle
is applied to estimate the unknown space- and time-dependent inlet temperature and heat-transfer rate
on the external wall of a pipe system using temperature measurements at two different locations. It is
assumed that no prior information is available on the functional form of the unknown inlet temperature
and heat-transfer rate; hence the procedure is classified as the function estimation in inverse calculation.
The temperature data obtained from the direct problem are used to simulate the temperature measure-
ments. The accuracy of the inverse analysis is examined by using simulated exact and inexact tempera-
ture measurements. Results show that an excellent estimation on the space- and time-dependent inlet
temperature and heat-transfer rate can be obtained for the test case considered in this study.

� 2008 Elsevier Ltd. All rights reserved.
1. Introduction sources, material’s thermal properties, and boundary temperature
Conjugate heat transfer, in which interaction occurs between
the conduction effects in a solid wall and the convection effects
within a fluid flowing around it, occurs in many engineering de-
vices. The flow over fins is one of good examples involving conju-
gate heat transfer. In this case, accurate heat transfer
characteristics can only be obtained by simultaneously analyzing
the conduction in the fins and the convection in the fluid. Another
example is that of a heat exchanger, in which an interaction takes
place between the conduction in the pipe wall and the convection
in the fluid flowing over the wall. Still there are many other exam-
ples in a variety of industries such as the cooling rods in a nuclear
reactor in a nuclear power plant. Due to the significance of their
role in industries, the problems associated with conjugate heat
transfer have been studied by numerous researchers [1–4]. Among
these problems, a particular interesting phenomenon in a pipe flow
is that a substantial amount of heat can be transferred to the fluid
in the unheated sections of the pipe as a result of wall conduction
effects. These effects are more pronounced when the solid-to-fluid
thermal conductivity ratio, ksf, is high and the inner-wall radius ra-
tio, Riw = riw/row, is low. In this situation, the thermal boundary con-
ditions existing at the internal surface are not known, and hence,
the energy equations must be solved with boundary conditions
of both temperature and heat flux.

In recent years, the studies of inverse heat conduction problem
(IHCP) have offered methods, which largely scale down experimen-
tal work, to obtain accurate thermal quantities such as heat
ll rights reserved.

g).
or heat flux distributions, in many heat conduction problems [5–
11]. While there have been many reports on IHCP, there are rela-
tively fewer studies on inverse problems involving conjugate heat
transfer, presumably due to the complex nature of the latter. Chen
et al. [12] applied a technique which combined the function spec-
ification method, the whole domain estimation approach, and the
linear least-squares-error method to estimate the unknown out-
er-wall heat flux and the inlet temperature simultaneously for con-
jugate heat transfer within a hydrodynamically developed
turbulent pipe flow. Yet, the unknowns in Chen’s study were only
time-dependent functions. Zueco and Alhama [13] recently pro-
posed a new inverse procedure to estimate the temperature-
dependent thermal properties for conjugate heat transfer within
a fully-developed flow in a circular pipe. In this study, a pipe sys-
tem similar to [13] is considered. The space- and time-dependent
fluid inlet temperature and heat-transfer rate on the pipe’s exter-
nal wall are simultaneously estimated by inverse method. The sys-
tem includes a fully developed pipe flow, solid pipe wall, and the
heat flux applied on the pipe’s external wall, thus the current prob-
lem is an inverse conjugate heat transfer problem.

There are several approaches to solve an inverse problem. In
this article, we present the conjugate gradient method (CGM)
[14–20] and the discrepancy principle [21] to simultaneously esti-
mate the space- and time-dependent fluid inlet temperature and
heat-transfer rate on the pipe’s external wall by using the simu-
lated temperature measurements. Subsequently, the distributions
of temperature in the pipe can be determined as well. The CGM be-
longs to a class of iterative regularization techniques, which mean
the regularization procedure is performed during the iterative
processes and thus the determination of optimal regularization
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Nomenclature

D1, D2 length parameters (m)
E thickness of the wall (m)
F inlet temperature (K)
J functional
J‘ gradient of functional
K thermal conductivity (W m�1 K�1)
L length of the duct (m)
M, N total number of measuring positions
p direction of descent
q heat-transfer rate at the wall (W m�2)
r inner radius of the duct (m)
r spatial radial coordinate (m)
T temperature (K)
T0 initial temperature (K)
t time (sec)
ux axial fluid velocity (m s�1)
x spatial axial coordinate (m)

Y measurement temperature (K)
D small variation quantity
a thermal diffusivity (m2 s�1)
b step size
c conjugate coefficient
g very small value
k, u variable used in adjoint problem
r standard deviation
s transformed time (sec)
- random variable

Superscript
K iterative number

Subscripts
f fluid
s solid
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conditions is not needed. The conjugate gradient method is derived
based on the perturbation principles and transforms the inverse
problem into the solutions of three problems, namely, the direct,
the sensitivity, and the adjoint problems, which will be discussed
in detail in the following sections. On the other hand, the discrep-
ancy principle is used to terminate the iteration process in the con-
jugate gradient method.

2. Analysis

2.1. Direct problem

To illustrate the methodology for developing expressions for
use in simultaneously determining the unknown space- and
time-dependent fluid inlet temperature F(r, t) and heat-transfer
rate q(x, t) on the external wall of a fully developed pipe flow,
the following transient conjugate heat transfer problem is con-
sidered. Fig. 1 shows the geometry of a fully developed pipe
flow. The pipe is of length L, radius R and thickness E, and the
system’s initial temperature (including pipe and fluid) is T0. As-
sume at time t = 0, the fluid inlet temperature Tf(0,r, t) com-
mences to vary as a function of space and time in the form
heated sect

q(x, t)

x 

r 

ux(r)

F(r, t)

x = 0 x = D1

Fig. 1. Schematic of a cylindrical co
F(r, t), and the heat also starts to impose on the external surface
of the pipe over the region D1 < x < D2 with a heat-transfer rate
of q(x, t), while the rest of the pipe’s external wall is under adi-
abatic condition. The heat then conducts inside the solid mate-
rial of the pipe towards the pipe’s inner wall where the heat
is transferred to the cold fluid by conjugate heat transfer. It is
eventually carried downstream by the forced convection of the
cold fluid flow inside the pipe. In the present simulations, the
calculations of these two distributions F(r, t) and q(x, t) are per-
formed simultaneously. The mathematical formulation of this
transient heat transfer problem, covering the solid and fluid do-
mains, can be expressed as [13]:
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@Tf
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ks
@Ts
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where F(r, t) is the fluid inlet temperature, q(x, t) is the heat-trans-
fer rate applied along r = R + E and D1 < x < D2, k is the thermal
conductivity, while ux(r) = 2uav[1 � (r/R)2] with uav being the aver-
age velocity. Here the subscript s and f refer to the solid region
and the fluid region, respectively. The direct problem considered
here is concerned with the determination of the medium temper-
ature when the inlet temperature F(r, t), heat-transfer rate q(x, t),
thermal properties, and initial and boundary conditions are
known.

2.2. Inverse problem

For the inverse problem, the fluid inlet temperature F(r, t) and
heat-transfer rate q(x, t) are regarded as being unknown, while
everything else in Eqs. (1)–(11) is known. In addition, tempera-
ture readings taken along the r axis at x = xm and along the x axis
at r = rm are considered available. The objective of the inverse
analysis is to predict the unknown space- and time-dependent
F(r, t) and q(x, t) simultaneously from the knowledge of these
temperature readings. Let the measured temperatures along the
r axis at x = xm and along the x axis at r = rm be denoted by
Y1(xm,r, t) and Y2(x,rm, t), respectively. Then this inverse problem
can be stated as follows: by utilizing the above mentioned mea-
sured temperature data Y1(xm,r, t) and Y2(x,rm, t), the unknowns
F(r, t) and q(x, t) are to be estimated simultaneously over the spec-
ified domain.

The solution of the present inverse problem is to be obtained in
such a way that the following functional is minimized:

J½Fðr; tÞ; qðx; tÞ� ¼
Z tf

t¼0

XM

i¼1

Tf ðxm; ri; tÞ � Y1ðxm; ri; tÞ
� �2dt

þ
Z tf

t¼0

XN

j¼1

Tsðxj; rm; tÞ � Y2ðxj; rm; tÞ
� �2 dt; ð12Þ

here M and N are the total numbers of measuring positions along
the r axis of x = xm and along the x axis of r = rm, respectively,
while Tf(xm,ri, t) and Ts(xj,rm, t) are the estimated (or computed)
temperatures at the measurement locations. These quantities
are determined from the solution of the direct problem given
previously by using an estimated ~FKðr; tÞ and ~qKðx; tÞ for the exact
F(r, t) and q(x, t), respectively. Here ~FKðr; tÞ and ~qKðx; tÞ denote the
estimated quantities at the Kth iteration. tf is the final time of the
measurement. In addition, in order to develop expressions for the
determination of the unknowns F(r, t) and q(x, t), a ‘‘sensitivity
problem” and an ‘‘adjoint problem” are constructed as described
below.
2.3. Sensitivity problem

Since the problem involves two unknowns, the fluid inlet
temperature F(r, t) and heat-transfer rate q(x, t), and in order to
derive the sensitivity problem for each unknown, we should per-
turb the unknown function one at a time. It is assumed that
when F(r, t) undergoes a variation DF(r, t), Tf(x, r, t) and Ts(x, r, t)
are perturbed by Tf + DTf1 and Ts + DTs1, respectively. Then
replacing in the direct problem F by F + DF, Tf by Tf + DTf1 and
Ts by Ts + DTs1, subtracting from the resulting expressions the di-
rect problem, and neglecting the second-order terms, the follow-
ing sensitivity problem for the sensitivity function DTf1 and DTs1

can be obtained.
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The sensitivity problem of Eqs. (13)–(23) can be solved by
the same method as the direct problem of Eqs. (1)–(11). Simi-
larly, by perturbing q(x, t) with Dq(x, t), the second sensitivity
problem for the sensitivity functions DTf2 and DTs2 can be
obtained.
2.4. Adjoint problem and gradient equation

To obtain the adjoint problem, Eqs. (1) and (2) are multiplied by
the Lagrange multipliers (or adjoint functions) ks(x,r, t) and kf(x,r, t),
respectively, and the resulting expressions are integrated over the
time and correspondent space domains. Then the results are added
to the right hand side of Eq. (12) to yield the following expression
for the functional J[F(r, t),q(x, t)]:
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The variation DJ1 is obtained by perturbing F(r, t) by DF(r, t),
Tf(x,r, t) and Ts(x,r, t) are perturbed by DTf1 and DTs1, respec-
tively, in Eq. (24). Subtracting from the resulting expression
the original Eq. (24) and neglecting the second-order terms,
we thus find
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where d is the Dirac function. We can integrate the third and fourth
triple integral terms in Eq. (25) by parts. Utilizing the initial and
boundary conditions of the sensitivity problem, then DJ1 is allowed
to go to zero. The vanishing of the integrands containing DTf1; and
DTs1 leads to the following adjoint problem for the determination of
kf(x,r, t) and ks(x,r, t):
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The adjoint problem is different from the standard initial value
problem in that the final time condition at time t = tf is specified in-
stead of customary initial condition. However, this problem can be
transformed to an initial value problem by the transformation of
the time variable as s ¼ tf � t. Then the adjoint problem can be
solved by the same method as the direct problem.

Finally the following integral term is left

DJ1ðr; tÞ ¼
Z tf

0

Z R
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@x
� DFðr; tÞdr dt: ð37Þ

From the definition used in Ref. [17], we have

DJ1ðr; tÞ ¼
Z tf

0

Z R

r¼0
J01 � DFðr; tÞdrdt ð38Þ
where J01ðr; tÞ is the gradient of the functional J1, a comparison of
Eqs. (37) and (38) leads to the following form:

J01½Fðr; tÞ� ¼ r � @kf ð0; r; tÞ
@x

ð39Þ

Similarly, Eqs. (1) and (2) are multiplied by the Lagrange multiplier
(or adjoint function) uf(x,r, t) and us(x,r, t) to derive the adjoint
problem for the case when perturbing Dq(x, t). Following the same
procedure, eventually, we find that the solutions for adjoint equa-
tions of uf(x, r, t) and us(x,r, t) are identical to those for kf(x,r, t) and
ks(x, r, t). This implies that the adjoint equations need to be solved
only once since kf(x,r, t) = /f(x, r, t) and ks(x, r, t) = /s(x,r, t). Finally
the gradient equation for q(x, t) can be obtained as

J02½qðx; tÞ� ¼ �ðRþ EÞ � /sðx;Rþ E; tÞ=ks ð40Þ
2.5. Conjugate gradient method for minimization

The following iteration process based on the conjugate gradient
method is now used for the simultaneous estimation of Fðr; tÞ and
qðx; tÞ by minimizing the above functional J½Fðr; tÞ; qðx; tÞ�:

F
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q
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2 pK

2 ðx; tÞ K ¼ 0;1;2; ::::; ð42Þ

where bK
1 and bK

2 are the search step size in going from iteration K to
iteration K + 1, and pK

1 ðr; tÞ and pK
2 ðx; tÞ are the direction of descent

(i.e., search direction) given by

pK
1 ðr; tÞ ¼ J0K1 ðr; tÞ þ cK

1 pK�1
1 ðr; tÞ; ð43Þ
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2 ðx; tÞ ¼ J0K2 ðx; tÞ þ cK

2 pK�1
2 ðx; tÞ: ð44Þ

The expressions for the conjugate coefficient cK
1 and cK

2 can be
found in [17]. To perform the iteration according to Eqs. (41) and
(42), we need to compute the step size bK

1 and bK
2 , and the gradient

of functional J0K1 ðr; tÞ and J0K2 ðx; tÞ. The bK
1 and bK

2 are computed by

minimizing J½F
�

kþ1ðr; tÞ; q
�

kþ1ðx; tÞ� given by Eq. (12) with respect to
bK

1 and bK
2 , respectively [22]. On the other hand, the gradient of

functional J0K1 ðr; tÞ and J0K2 ðx; tÞ are obtained from the solutions of ad-
joint problem.

2.6. Stopping criterion

If the problem contains no measurement errors, the traditional
check condition specified as

J½F
�

kþ1ðr; tÞ; q
�kþ1ðx; tÞ� < g ð45Þ

where g is a small specified number, can be used as the stopping
criterion. However, the observed temperature data contains mea-
surement errors; as a result, the inverse solution will tend to ap-
proach the perturbed input data, and the solution will exhibit
oscillatory behavior as the number of iteration is increased [23].
Computational experience has shown that it is advisable to use
the discrepancy principle [21] for terminating the iteration process
in the conjugate gradient method. Assuming Tf ðxm; ri; tÞ�
Y1ðxm; ri; tÞ ffi Tsðxj; rm; tÞ � Y2ðxj; rm; tÞ ffi r; where r is the standard
deviation of the measurement error, the stopping criteria g by the
discrepancy principle can be obtained from Eq. (12) as

g ¼ r2tf ðM þ NÞ: ð46Þ

Then the stopping criterion is given by Eq. (45) with g deter-
mined from Eq. (46).
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2.7. Computational procedures

The computational procedure for the solution of this inverse
problem may be summarized as follows:

Suppose eF Kðr; tÞ and ~qKðx; tÞ is available at iteration K.

Step 1 Solve the direct problem given by Eqs. (1)–(11) for Tf(xm,
ri, t) and Ts(xj, rm, t), respectively.

Step 2 Examine the stopping criterion given by Eq. (45) with g
given by Eq. (46). Continue if not satisfied.

Step 3 Solve the adjoint problem given by Eqs. (26)–(36) for kf

(x, r, t) and ks(x, r, t), respectively.
Step 4 Compute the gradient of the functional J01½Fðr; tÞ� and

J02½qðx; tÞ� from Eqs. (39) and (40), respectively.
Step 5 Compute the conjugate coefficients cK

1 and cK
1 and the

direction of decent pK
1 ðr; tÞ and pK

2 ðx; tÞ, respectively.
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Fig. 2. Exact distributions: (a) inlet temperature
Step 6 Set DFðr; tÞ ¼ pK
1 and Dqðx; tÞ ¼ pK

2 , and solve the sensitiv-
ity problem for DTf1(xm,ri, t), DTs1(xj,rm, t) and DTf2(xm,ri, t),
DTs2(xj,rm, t).

Step 7 Compute the search step size bK
1 and bK

2 .
Step 8 Compute the new estimation for eF Kþ1ðr; tÞ and ~qKþ1ðx; tÞ

from Eqs. (41) and (42), and return to Step 1.
3. Results and discussion

In the present study, we assume the material of the pipe wall
being steel and the fluid being air. Then the material properties
and the geometric parameters of the system are listed as follows:

as ¼ 1:5� 10�5 m2 s�1; af ¼ 2:2� 10�5 m2 s�1;

ks ¼ 52 W m�1 K�1; kf ¼ 0:0262 W m�1 K�1; R ¼ 0:2 m;

E ¼ 0:02 m; L ¼ 1:5 m;D1 ¼ 0:4 m;D2 ¼ 1:1 m:
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The flow in the pipe is assumed to be laminar and fully devel-
oped; hence the velocity profile is:

uxðrÞ ¼ 2uav 1� r
R

� �2
� �

;

where uav is the bulk averaged velocity of the pipe flow and is set to
be 0.2 m s�1 in this study.

The objective of this article is to validate the present ap-
proach when used to simultaneously estimate the space- and
time-dependent inlet temperature F(r, t) and heat-transfer rate
q(x, t) on a pipe’s external wall accurately without prior informa-
tion on the functional form of the unknown quantities, a proce-
dure called function estimation. In order to illustrate the
accuracy of the present inverse analysis, we consider the simu-
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Fig. 3. Estimated distributions with r = 0.0 and initial guesses F
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lated exact distributions of inlet temperature and heat-transfer
rate, F(r, t) and q(x, t) as:

Fðr; tÞ ¼ 10 cos 0:25
r
R
p

� �
sin

pt
2000

� 	
K; ð47Þ

and

qðx; tÞ ¼ 100þ 20 sin
x� D1

D2 � D1
p

� 	� �
e

t
1000W m�2; ð48Þ

respectively. In addition, the thermocouples are located along the r
axis of x = xm = 0.04 m and along the x axis of r = rm = 0.2159 m,
respectively. The heat-transfer-rate function q(x, t) is so formulated
that at any moment, the quantity has its maximum value occurring
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at the center of the heated section and gradually reduces towards
the two ends of the heated section. Additionally, the magnitude of
the quantity increases in general as time elapses, simulating a grad-
ual increase of heating power. The plots of the exact F(r, t) and q(x, t)
are shown in Fig. 2(a) and (b), respectively. The selection of the ex-
act heat-transfer rate is also for the purpose of demonstrating that
an accurate estimation of q(x, t) can be obtained using the current
method despite the complexity of the functional form of q(x, t) itself.

The numerical procedure in this paper is based on the unstruc-
tured-mesh, fully collocated, finite-volume code, ‘USTREAM’ devel-
oped by the second author. This is the descendent of the
structured-mesh, multi-block code of ‘STREAM’ [24]. Due to the
fact that the computational domain is symmetrical to the center
line of the pipe, only the upper half of the domain is solved for
the inverse problem. Also in the current problem, the vicinity of
heated section is the most important part as far as heat transfer
is concerned; hence fine mesh is used in this region. For the rest
of the wall, a coarser mesh is applied. Subsequently, there are 30
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Fig. 4. Estimated distributions at t = 100, 500, and 900 sec, respectively, with
r = 0.0 and initial guesses F

�
0 ¼ T0 and q

�0 ¼ 0: (a) inlet temperature F(r, t) � T0 and
(b) heat-transfer rate q(x, t).
and 20 cells allocated for heated section and the rest of the pipe,
respectively in the axial direction. The thermocouples are assumed
located at the same positions as the surface grid cells inside the
heated region. Along the radial direction, on the other hand, we
found that at least 5 cells are needed to obtain grid-independent
solutions even for the relative thin pipe wall. Therefore, 5 and 20
cells are respectively allocated for the solid pipe wall and the fluid
space inside the pipe. In terms of the temporal domain, the total
measurement time is chosen as tf = 1000 sec and measurement
time step is taken to be 10 sec. The specification of this relative
long time duration is because the thermal diffusivities for both so-
lid and fluid materials are very small, resulting in a very slow
development of thermal field in the system. Even with the duration
of 1000 sec and the heat-transfer rate specified in this study, the
maximum temperature is only about 3 degree higher than the ini-
tial temperature at the end of the time period.

In the analysis, we do not have a real experimental set up
to measure the temperatures Y1 and Y2 in Eq. (12). Instead, we
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Fig. 5. Estimated temperature distributions on measurement points at t = 100, 500,
and 900 sec, respectively, with r = 0.0 and initial guesses F
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(a) xm = 0.04 m (b) rm = 0.2159 m.
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substitute the simulated exact F(r, t) and q(x, t) in Eqs. (47) and (48)
into the direct problem of Eqs. (1)–(11) to calculate the tempera-
tures at the locations where the thermocouples are placed. The
results are taken as the computed temperature Yexact. Meanwhile,
in order to consider the situation of measurement errors, a random
error noise is added to the above computed temperature Yexact to
obtain the measured temperaturesY1 and Y2. Hence, the measured
temperature Y is expressed as:

Y ¼ Yexact þ-r;

where - is a random variable within �2.576 to 2.576 for a 99% con-
fidence bounds, and r is the standard deviation of the measure-
ment. The measured temperatures Y1 and Y2 generated in such
way are the so-called simulated measurement temperatures.

The inverse solutions obtained from the numerical experiments
with the initial guess values eF 0ðr; tÞ = T0 K, ~q0ðx; tÞ = 0 W m�2, and
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Fig. 6. Estimated distributions with r = 0.01 and initial guesses F
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0 ¼ T0 and q
�

no measurement errors (r = 0.0) are shown in Fig. 3. The compar-
ison between Figs. 2 and 3 shows that the estimated values for in-
let temperature and heat-transfer rate are almost identical to the
exact values of F(r, t) and q(x, t). Fig. 4 demonstrates the comparison
of the estimated values for inlet temperature and heat-transfer rate
with the exact values at t = 100, 500, and 900 sec, respectively, for
measurement error of deviation r = 0.0 and initial guess values
~F0ðr; tÞ = T0 K, ~q0ðx; tÞ = 0 W m�2. Fig. 5 depicts the estimated and
exact temperature profiles on the measurement points at t = 100,
500, and 900 sec, respectively, with the same measurement error
and initial guess values as those of Figs. 3 and 4. It can be found
in Figs. 4 and 5 that the predicted values are in excellent agreement
with the exact results.

In order to investigate the effect of measurement error on the
accuracy of the estimated values, Fig. 6 illustrates the inverse solu-
tions of F(r, t) and q(x, t), obtained with the measurement error of
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deviation r = 0.01 and initial guess values eF 0ðr; tÞ = T0 K, ~q0ðx; tÞ =
0 W m�2. For a temperature of unity and 99% confidence, that stan-
dard deviation, r = 0.01, corresponds to measurement error of
2.58%. A comparison among Figs. 2, 3 and 6 reveals that, for the
cases considered in this study, increase in the measurement error
does not cause obvious decrease on the accuracy of the inverse
solution. The estimated values of F(r, t) and q(x, t) at t = 100, 500,
and 900 sec, respectively, with the same measurement error and
initial guess values as those of Fig. 6 are shown in Fig. 7. Figs. 6
and 7 prove that the proposed inverse method is still capable of
yielding satisfactory results even when a measurement error
(r = 0.01) is introduced. Finally, with inlet temperature and heat-
transfer rate been accurately estimated, the temperature distribu-
tions across the entire domain can also be accurately calculated.
Fig. 8 shows the temperature distributions along the radial direc-
tion at x = 0.75 m at t = 100, 500, and 900 sec for r = 0.0 and 0.01,
respectively. The initial guess values for Fig. 8 are eF 0ðr; tÞ = T0 K,
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Fig. 7. Estimated distributions at t = 100, 500, and 900 sec, respectively, with
r = 0.01 and initial guesses F
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ig. 8. Estimated temperature distributions along radial direction at x = 0.75 m at
= 100, 500, and 900 sec, respectively, with initial guesses F
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= 0.0 and 0.01, respectively.
F
t
r

~q0ðx; tÞ = 0 W m�2. It can be seen that the estimated temperature
with r = 0.0 is virtually identical to the exact temperature at the
3 time steps shown, while there are only minor differences be-
tween the exact temperature and the estimated temperature with
r = 0.01.
4. Conclusion

An inverse algorithm based on the conjugate gradient method
and the discrepancy principle was successfully applied for the
solution of the inverse problem to simultaneously determine
the unknown space- and time-dependent fluid inlet temperature
and heat-transfer rate on the external wall of a pipe system with
the knowledge of the temperature history at some measurement
locations. Subsequently, the temperature distributions in the sys-
tem can be calculated. Numerical results confirm that the pro-
posed method can accurately estimate the space- and time-
dependent inlet temperature, heat-transfer rate, and temperature
distributions for the problem even involving the inevitable mea-
surement errors. In addition, the conjugate gradient method does
not require prior information for the functional form of the un-
known quantities to perform the inverse calculation, and excel-
lent estimated values can be obtained for the considered
problem.
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